

Form:	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963
Course Syllabus		05/12/2022
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	06

1.	Course Title	Special Topics in Physics			
2.	Course Number	0302792			
3.	Credit Hours (Theory, Practical)	3 theory			
5.	Contact Hours (Theory, Practical)	3 theory			
4.	Prerequisites/ Corequisites	No prerequisites			
5.	Program Title	M.Sc. in Physics			
6.	Program Code				
7.	School/ Center	Faculty of Science			
8.	Department	Department of Physics			
9.	Course Level	1 st year			
10.	Year of Study and Semester (s)	Fall semester 2023/2024			
11.	Other Department(s) Involved in				
11.	Teaching the Course				
12.	Main Learning Language	English			
13.	Learning Types	□Face to face learning □Blended □Fully online			
14.	Online Platforms(s)	\Box Moodle \Box Microsoft Teams			
15.	Issuing Date	October 2024			
16.	Revision Date	December 2024			

17. Course Coordinator:

Name: Dr. Noureddine Chair	Contact hours: (10:00-12:00) Sunday, Tuesday, Thursday
Office number: 013	Phone number: 22023
Email: n.chair@ju.edu.jo	

The University of Jordan

18. Other Instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19. Course Description:

As stated in the approved study plan.

This course lays down the foundations for experimental and theoretical backgrounds relevant to current research topics in the department. This course should assist students in their research fields, and equip them with a wealth of advanced knowledge in physics.

- **20. Program Intended Learning Outcomes:** (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)
 - 1. To be able to identify, formulate, and solve broadly defined technical or scientific problems by applying knowledge of mathematics and science and/or technical topics to areas relevant to the discipline.
 - 2. To be able to formulate or design a scientific system, process, procedure or program to contribute achieving scientific desired needs.
 - 3. To be able to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions.
 - 4. To be able to communicate his/her scientific contributions effectively with a range of audiences.
 - 5. To be able to recognize and demonstrate social, ethical and professional responsibilities and the impact of technical and/or scientific solutions in global economic, environmental, and societal contexts.

6. To be able to function effectively independently and on teams for establishing goals, plan tasks, meet deadlines, and analyze risk and uncertainty.

21. Course Intended Learning Outcomes: (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

1- Lagrangian and Hamiltonian Mechanics: Develop familiarity with Lagrangian and Hamiltonian formulations and their applications in weak perturbation scenarios.

2- Operator Theory: Understand the principles of Hilbert space, operator functions, and time-dependent systems.

3- Quantized Oscillators: Explore the coordinate basis and coherent states in quantized oscillators.

4- Particle Distinction: Differentiate between Fermions and Bosons based on their statistical properties and quantum behavior.

5- Forced Oscillators: Solve problems involving forced oscillators using analytical techniques.

6- Perturbation Theory: Apply perturbation theory to solve advanced problems in physics.

7- Field Theory: Understand the concepts of free fields and the plane wave expansion for scalar and spinor fields.

8- Advanced Methods: Gain familiarity with Green's functions and Wick's theorem for practical applications in physics research.

Course ILOs	The learning levels to be achieved								
	Remembering	Understanding	Applying	Analysing	evaluating	Creating			
1	\checkmark	\checkmark	\checkmark	\checkmark					
2	\checkmark	\checkmark	\checkmark	\checkmark					
3	\checkmark	\checkmark	\checkmark	\checkmark					
4	\checkmark	\checkmark		\checkmark	\checkmark				
5	\checkmark	\checkmark	\checkmark	\checkmark					
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
7	\checkmark	\checkmark	\checkmark	\checkmark					
8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

2⁷. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program	ILO (1)	ILO (2)	ILO (3)	ILO (4)	ILO (5)	ILO (6)
ILOs						
Course ILOs						
1	\checkmark	\checkmark		\checkmark		
2	\checkmark	\checkmark		\checkmark		
3	\checkmark	\checkmark		\checkmark		
4	\checkmark	\checkmark		\checkmark		
5	\checkmark	\checkmark		\checkmark		
6	\checkmark	\checkmark		\checkmark		

2^r. Topic Outline and Schedule:

Week	Lecture	Topic	ILO/s Linked to the Topic	Learning Types (Face to Face/ Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
	1.1		1					
1	1.2							
	1.3	Classical theory					Oral	
	2.1		1		Microsoft	Synchronous	Quizzes,	
2	2.2			Face to Face	Teams	Lecturing	Midterm	OFD
	2.3	Classical theory					Exam, Final Exam	QED Lecture
3	3.1		2 +3					Notes (1994)
5	3.2							(ICTP

The University of Jordan

الجامعة الاردنية

I	1		1
	3.3	Quantized oscillators	
	4.1	oscillators	2 +3
4	4.1	-	
4	4.2	Quantized	
		oscillators	4
_	5.1	-	4
5	5.2	Fermions and	
	5.3	boson	4
6	6.1	-	4
6	6.2	Fermions and	
	6.3	boson	5
_	7.1		5
7	7.2	The forced	
	7.3	oscillator	
	8.1	-	5
8	8.2	The forced	
	8.3	oscillator	
	9.1	-	6
9	9.2	Perturbation	
	9.3	theory	-
	10.1	-	6
10	10.2	Perturbation	
	10.3	theory	
	11.1		7
11	11.2	Free Fields	
	11.3		
	12.1	Free Fields	7
12	12.2		
	12.3	1	
	13.1		7
13	13.2	Free Fields	
	13.3		
	14.1		8
14	14.2	Green's	
	14.3	functions and Wick's theorem	
	15.1		8
	15.2	-	
15	15.3	Green's functions and Wick's theorem	

v

24. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	ILO/s Linked to the Evaluation activity	Period (Week)	Platform
Midterm Exam	40%	Classical theory Quantized oscillators Fermions and boson The forced oscillator Perturbation theory Free Fields	1-7	12	On campus
Oral Exam	20%	Interacting fields	1-8	14	On campus
Final Exam	40%	All	1-8	16	On campus

2°. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.):

N/A

27. Course Policies:

- A- Attendance policies: According to JU by-laws.
- B- Absences from exams and submitting assignments on time: According to JU by-laws.
- C- Health and safety procedures: N/A
- D- Honesty policy regarding cheating, plagiarism, misbehavior: According to JU by-laws.
- E- Grading policy: According to JU by-laws.
- F- Available university services that support achievement in the course: N/Av

The University of Jordan

2^v. References:

A- Required book(s), assigned reading and audio-visuals:

Lectures of Quantum field theory by John Strathdee (ICTP) and the Classic book Quantum fled by

CLAUDE ITZYKSON and JEAN-BERNARD ZUBER, McGraw-Hill, Inc, 1980

B- Recommended books, materials, and media:

2^A. Additional information:

N/A		
Name of the Instructor or the Course Coordinator:	Signature:	Date: 10/2024
Name of the Head of Quality Assurance Committee/ Department	Signature:	Date:

Signature:

Name of the Head of DepartmentSignature:Name of the Head of Quality Assurance
Committee/ School or CenterSignature:

Name of the Dean or the Director

gnature:	Date:
gnature:	Date:
gnature:	Date:

Date: